国产999免费视频|亚洲欧美激情综合首页|动漫人妻h无码中文字幕|国产精品欧美日韩视频一区|美女精品人妻视频一区二区|中文亲近交尾bd在线播放|色五月丁香亚洲高清无码国产|久久一区国产男人操女人的视频

        1. position: EnglishChannel  > InnovationChina> Quantum Tech: China's Scientific Pride

          Quantum Tech: China's Scientific Pride

          Source: | 2023-11-10 11:26:40 | Author: LIANG Yilian

          Xue Qikun's?working?in?Tsinghua University.?(PHOTO?provided?by?Tsinghua University)

          By?LIANG?Yilian

          Chinese physicist Xue Qikun was awarded the 2024 Oliver E. Buckley Prize by the American Physical Society on October 24. This marks the first time a Chinese scientist has won the top prize in condensed matter physics since the award was founded in 1953.

          Xue received the award for his research on topological insulators and innovative breakthroughs in experimentally discovering the quantum anomalous Hall effect (QAHE) in a magnetic topological insulator.

          This significant achievement and a series of breakthroughs Chinese scientists made in recent years in the quantum field, show that the country's quantum technology ranks among the best in the world.

          Catching up, qubit by qubit

          Quantum computing is based on the principles of quantum mechanics and qubits. In September 2019, Google launched a 53 qubit computer called Sycamore, which took only 200 seconds to calculate a mathematical algorithm. At that time the world's fastest supercomputer Summit took two days to do the same task, and the U.S. took the lead in achieving "quantum supremacy."

          A year later, China successfully developed the 76-photon quantum computing prototype "Jiuzhang," which solved the mathematical algorithm Gaussian Boson sampling in just 200 seconds, compared to 600 million years for the world's fastest supercomputer at the time. This made China the second country in the world to achieve "quantum supremacy."

          Now, Jiuzhang 3.0 is able to solve a Gaussian Boson sampling problem ten quadrillion times faster than Frontier, the world's current most powerful supercomputer.

          "If you look at the West — the U.S., Europe — there haven't been a lot of people talking about repeating [Google's 2019] experiment," John Martinis, a former Google researcher who led the team to build Sycamore, told Scientific American, adding "I admire, in China, that they want to do this seriously."

          "In the three major fields of quantum, we are among the top in all aspects. China's quantum computing ability used to be relatively backward, but now it has caught up," Guo Guangcan, academician of the Chinese Academy of Sciences (CAS) told Xinhua.

          Quantum tech leader

          From "Jiuzhang" to "Jiuzhang 3.0," and from "Zuchongzhi" to "Zuchongzhi 2," China's quantum technology is gaining momentum.

          The rapid development of China's quantum research benifits from government support. Pan Jianwei, an academician at CAS, attributed the surge in quantum research to China's institutional advantage of "uniting resources on big things."

          Pan took the China-developed quantum satellite Micius as an example. Every component of the satellite has come from the effort of various scientific research institutes such as the Shanghai Institute of Technical Physics CAS, Innovation Academy of Microsatellites of CAS, and National Astronomical Observatories, CAS.

          "Different organizations have provided us with the basic components we need, giving us a solid engineering foundation for our innovative ideas. Some of my colleagues abroad have had similar scientific ideas, but no country has fully supported them like our country," said Pan.

          "These achievements have benefited from the continuous growth of the national scientific and technological strength and the long-term profound accumulation of basic scientific research since China's reform and opening up. Therefore, the honor belongs not only to each researcher of the team, but also to the country," Xue Qikun told a media on October 25.

          Challenges ahead

          Although China is a leading country in quantum technology, it is still facing challenges, such as a lack of more talent in this field.

          In 2021, the word "quantum information" first appeared in the "14th Five-Year Plan" and the "Government Work Report." However, this year, the Ministry of Education has officially included quantum information science in undergraduate education, to speed up the training of

          experts in the quantum field. This will assist more and more young researchers to flow in to the quantum field and contribute to the industry.

          Quantum computing is a tough subject, and the current research is still at the early stages of quantum technology, which is still full of challenges in obtaining a breakthrough of basic physics. "The global race for quantum computing is essentially more like a marathon, with a long road ahead," USTC's Professor Guo Guoping told People's Daily.

          Editor:梁依蓮

          抱歉,您使用的瀏覽器版本過(guò)低或開啟了瀏覽器兼容模式,這會(huì)影響您正常瀏覽本網(wǎng)頁(yè)

          您可以進(jìn)行以下操作:

          1.將瀏覽器切換回極速模式

          2.點(diǎn)擊下面圖標(biāo)升級(jí)或更換您的瀏覽器

          3.暫不升級(jí),繼續(xù)瀏覽

          繼續(xù)瀏覽
          休宁县| 特克斯县| 涞水县| 崇礼县| 祁东县| 磐安县| 万盛区| 横峰县| 三明市| 德格县| 丰镇市| 林口县| 萨迦县| 镇原县| 和林格尔县| 彰武县| 阿勒泰市| 榆树市| 夏河县| 安泽县| 金昌市| 开江县| 越西县| 洛阳市| 永嘉县| 马山县| 佛冈县| 托里县| 驻马店市| 龙胜| 太白县| 新巴尔虎左旗| 凤城市| 交城县| 镇赉县| 昌图县| 平原县| 金阳县| 育儿| 临沂市| 科技|